Diagonalization of Linear Operators on Inner Product Spaces

Michael Freeze

MAT 531: Linear Algebra
UNC Wilmington

Spring 2015
Let $T : V \rightarrow V$ be a linear operator on an inner product space V.

What conditions guarantee that V has an orthonormal basis of eigenvectors of T?
When T has an eigenvector, so does T^*

Lemma
Let $T : V \rightarrow V$ be a linear operator on a finite-dimensional inner product space V.
If T has an eigenvector, then so does T^*.

Proof
Suppose that \vec{v} is an eigenvector of T with corresponding eigenvalue λ. Then for any $\vec{x} \in V$,

$$0 = \langle \vec{0}, \vec{x} \rangle = \langle (T - \lambda I)(\vec{v}), \vec{x} \rangle = \langle \vec{v}, (T - \lambda I)^*(\vec{x}) \rangle = \langle \vec{v}, (T^* - \bar{\lambda} I)(\vec{x}) \rangle,$$

and hence \vec{v} is orthogonal to the range of $T^* - \bar{\lambda} I$.

So $T^* - \bar{\lambda} I$ is not onto and hence not one-to-one.
When T has an eigenvector, so does T^*

Lemma
Let $T : V \rightarrow V$ be a linear operator on a finite-dimensional inner product space V.
If T has an eigenvector, then so does T^*.

Proof
So $T^* - \lambda I$ is not onto and hence not one-to-one.
Thus $T^* - \lambda I$ has a nonzero null space, and any nonzero vector in this null space is an eigenvector of T^* with corresponding eigenvalue λ.
Triangularizability

Theorem (Schur)

Let T be a linear operator on a finite-dimensional inner product space V. Suppose that the characteristic polynomial of T splits. Then there exists an orthonormal basis β for V such that the matrix $[T]_{\beta}$ is upper triangular.
Proof of Schur’s Theorem

Proceed by induction on \(n = \dim(V) \), noting that the case \(n = 1 \) is immediate.
Proof of Schur’s Theorem

Proceed by induction on \(n = \dim(V) \), noting that the case \(n = 1 \) is immediate.

Suppose the result is true for linear operators on \((n - 1)\)-dimensional inner product spaces whose characteristic polynomials split.
Proof of Schur’s Theorem

Proceed by induction on $n = \dim(V)$, noting that the case $n = 1$ is immediate.

Suppose the result is true for linear operators on $(n - 1)$-dimensional inner product spaces whose characteristic polynomials split.

Since T has an eigenvector, so does T^* by the prior lemma. Write $T^*(\vec{z}) = \lambda \vec{z}$ and let $W = \text{Span}(\{\vec{z}\})$.

Proof of Schur’s Theorem

Proceed by induction on \(n = \dim(V) \), noting that the case \(n = 1 \) is immediate.

Suppose the result is true for linear operators on \((n - 1)\)-dimensional inner product spaces whose characteristic polynomials split.

Since \(T \) has an eigenvector, so does \(T^* \) by the prior lemma. Write \(T^* (\vec{z}) = \lambda \vec{z} \) and let \(W = \text{Span}(\{\vec{z}\}) \).

Observe that \(W^\perp \) is \(T \)-invariant. It follows that the characteristic polynomial of \(T_{W^\perp} \) splits since it divides the characteristic polynomial of \(T \). Further, \(\dim(W^\perp) = n - 1 \).
Proof of Schur’s Theorem

Proceed by induction on \(n = \dim(V) \), noting that the case \(n = 1 \) is immediate.

Suppose the result is true for linear operators on \((n - 1)\)-dimensional inner product spaces whose characteristic polynomials split.

Since \(T \) has an eigenvector, so does \(T^* \) by the prior lemma. Write \(T^*(\vec{z}) = \lambda \vec{z} \) and let \(W = \text{Span}(\{\vec{z}\}) \).

Observe that \(W^\perp \) is \(T \)-invariant. It follows that the characteristic polynomial of \(T_{W^\perp} \) splits since it divides the characteristic polynomial of \(T \). Further, \(\dim(W^\perp) = n - 1 \).

Now apply the result to \(T_{W^\perp} \) to obtain an orthonormal basis \(\gamma \) of \(W^\perp \) such that \([T_{W^\perp}]_{\gamma} \) is upper triangular.
Proof of Schur’s Theorem

Proceed by induction on $n = \dim(V)$, noting that the case $n = 1$ is immediate.

Suppose the result is true for linear operators on $(n - 1)$-dimensional inner product spaces whose characteristic polynomials split.

Since T has an eigenvector, so does T^* by the prior lemma. Write $T^*(\vec{z}) = \lambda \vec{z}$ and let $W = \text{Span}(\{\vec{z}\})$.

Observe that W^\perp is T-invariant. It follows that the characteristic polynomial of T_{W^\perp} splits since it divides the characteristic polynomial of T. Further, $\dim(W^\perp) = n - 1$.

Now apply the result to T_{W^\perp} to obtain an orthonormal basis γ of W^\perp such that $[T_{W^\perp}]_\gamma$ is upper triangular.

We find that $\beta = \gamma \cup \{\vec{z}\}$ is an orthonormal basis for V such that $[T]_\beta$ is upper triangular.
A Necessary Condition for Existence of an Orthonormal Basis of Eigenvectors of T

Let $T : V \rightarrow V$ be a linear operator on a finite-dimensional inner product space V.

Suppose that V has an orthonormal basis β of eigenvectors of T.

Then $[T]_\beta$ is diagonal, and we have that $[T^*]_\beta = [T]^*_\beta$ is also diagonal.

Since diagonal matrices commute, we infer that T and T^* commute.
A Necessary Condition for Existence of an Orthonormal Basis of Eigenvectors of T

Let $T : V \rightarrow V$ be a linear operator on a finite-dimensional inner product space V.

Proposition

If V possesses an orthonormal basis of eigenvectors of T, then $T T^* = T^* T$.

Definition

We say that a linear operator T on an inner product space is normal when $T T^* = T^* T$.
Is normality of a linear operator T on an inner product space V sufficient for existence of an orthonormal basis of V consisting of eigenvectors of T?
Example

Consider the real inner product space \mathbb{R}^2 with dot product and standard orthonormal basis β.

Let $T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be rotation by θ where $0 < \theta < \pi$.

Observe that $[T]_\beta = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$.

Writing $A = [T]_\beta$, verify that $AA^* = I = A^* A$ and that A has no eigenvector.
Properties of Normal Operators

Theorem
Let V be an inner product space and let T be a normal operator on V. Then the following statements are true:

(a) $\|T(\vec{x})\| = \|T^*(\vec{x})\|$ for all $\vec{x} \in V$

(b) $T - cI$ is normal for every $c \in F$

(c) If \vec{x} is an eigenvector of T, then \vec{x} is also an eigenvector of T^*. In fact, if $T(\vec{x}) = \lambda \vec{x}$, then $T^*(\vec{x}) = \bar{\lambda} \vec{x}$.

(d) If λ_1 and λ_2 are distinct eigenvalues of T with corresponding eigenvectors \vec{x}_1 and \vec{x}_2, then \vec{x}_1 and \vec{x}_2 are orthogonal.
Properties of Normal Operators

Theorem

Let V be an inner product space and let T be a normal operator on V. Then the following statements are true:

(a) $\| T(\vec{x}) \| = \| T^*(\vec{x}) \|$ for all $\vec{x} \in V$

Recall that

$$\langle T(\vec{u}), \vec{v} \rangle = \langle \vec{u}, T^*(\vec{v}) \rangle$$

and

$$\langle \vec{u}, T(\vec{v}) \rangle = \langle T^*(\vec{u}), \vec{v} \rangle.$$

For each $\vec{x} \in V$ we then have

$$\| T(\vec{x}) \|^2 = \langle T(\vec{x}), T(\vec{x}) \rangle = \langle T^* T(\vec{x}), \vec{x} \rangle$$

$$= \langle T T^*(\vec{x}), \vec{x} \rangle = \langle T^*(\vec{x}), T^*(\vec{x}) \rangle$$

$$= \| T^*(\vec{x}) \|^2.$$
Properties of Normal Operators

Theorem
Let V be an inner product space and let T be a normal operator on V. Then the following statements are true:

(c) If \vec{x} is an eigenvector of T, then \vec{x} is also an eigenvector of T^*. In fact, if $T(\vec{x}) = \lambda \vec{x}$, then $T^*(\vec{x}) = \overline{\lambda} \vec{x}$.

Suppose $T(\vec{x}) = \lambda \vec{x}$ for some nonzero $\vec{x} \in V$. Let $U = T - \lambda I$. Then $U(\vec{x}) = \vec{0}$ and U is normal by part (b).

Using part (a), we see that

$$0 = \|U(\vec{x})\| = \|U^*(\vec{x})\| = \|(T^* - \overline{\lambda} I)(\vec{x})\| = \|T^*(\vec{x}) - \overline{\lambda} \vec{x}\|.$$

Thus $T^*(\vec{x}) = \overline{\lambda} \vec{x}$ and we have that \vec{x} is an eigenvector of T^*.
Properties of Normal Operators

Theorem

Let V be an inner product space and let T be a normal operator on V. Then the following statements are true:

(d) If λ_1 and λ_2 are distinct eigenvalues of T with corresponding eigenvectors \vec{x}_1 and \vec{x}_2, then \vec{x}_1 and \vec{x}_2 are orthogonal.

Observe that

$$
\lambda_1 \langle \vec{x}_1, \vec{x}_2 \rangle = \langle \lambda_1 \vec{x}_1, \vec{x}_2 \rangle = \langle T(\vec{x}_1), \vec{x}_2 \rangle = \langle \vec{x}_1, T^*(\vec{x}_2) \rangle = \langle \vec{x}_1, \lambda_2 \vec{x}_2 \rangle = \lambda_2 \langle \vec{x}_1, \vec{x}_2 \rangle.
$$

Since $\lambda_1 \neq \lambda_2$, we must have $\langle \vec{x}_1, \vec{x}_2 \rangle = 0.$
Normality Suffices for Complex Inner Product Spaces

Theorem
Let T be a linear operator on a finite-dimensional complex inner product space V. Then T is normal if and only if there exists an orthonormal basis for V consisting of eigenvectors of T.

Proof Idea
Observe that necessity has already been justified.

Since the inner product space is complex, we know from the Fundamental Theorem of Algebra that the characteristic polynomial of T splits. We may then apply Schur’s Theorem to obtain an orthonormal basis β for V such that $[T]_{\beta} = A$ is upper triangular.

Now proceed by induction on $n = \dim(V)$.
What Condition Suffices for Real Inner Product Spaces?

We claim that the condition $T = T^*$ is sufficient for the existence of an orthonormal basis of eigenvectors of T when V is a real inner product space.

Definition

Let T be a linear operator on an inner product space V. We say that T is **self-adjoint** (or **Hermitian**) when $T = T^*$.

Observe that self-adjointness is a stronger condition than normality.
Example

Determine whether the linear operator is normal, self-adjoint, or neither.

Let $V = \mathbb{C}^2$ with standard inner product and define $T : V \to V$ by $T(a, b) = (2a + ib, a + 2b)$.
Example

Determine whether the linear operator is normal, self-adjoint, or neither.

Let $V = \mathbb{C}^2$ with standard inner product and define $T : V \rightarrow V$ by $T(a, b) = (2a + i b, -i a + 2b)$.
Example

Determine whether the linear operator is normal, self-adjoint, or neither.

Let $V = P_2(\mathbb{R})$ with inner product $\langle f, g \rangle = \int_0^1 f(t)g(t) \, dt$ and define $T : V \to V$ by $T(f) = f'$.

Example

Determine whether the linear operator is normal, self-adjoint, or neither.

Let $V = P_2(\mathbb{R})$ with inner product $\langle f, g \rangle = \int_0^1 f(t)g(t) \, dt$ and define $T : V \to V$ by $T(f) = f'$.

Take an orthonormal basis for $P_2(\mathbb{R})$:

For $\beta = \{1, \sqrt{3}(2t - 1), \sqrt{5}(6t^2 - 6t + 1)\}$, we have

$$[T]_\beta = \begin{bmatrix} 0 & 2\sqrt{3} & 0 \\ 0 & 0 & 2\sqrt{15} \\ 0 & 0 & 0 \end{bmatrix}.$$
Real Eigenvalues

Lemma
Let T be a self-adjoint operator on a finite-dimensional inner product space V. Then every eigenvalue of T is real.

Proof
Suppose that $T(\vec{x}) = \lambda \vec{x}$ for some $\vec{x} \neq \vec{0}$.

Since self-adjointness implies normality, we may recall a property of normal operators to obtain

$$\lambda \vec{x} = T(\vec{x}) = T^*(\vec{x}) = \overline{\lambda} \vec{x}.$$

It follows that $\lambda = \overline{\lambda}$, so that λ is real.

An immediate consequence of the lemma is that for self-adjoint operators on finite-dimensional inner product spaces, the characteristic polynomial splits.
Self-Adjointness Suffices for Real Inner Product Spaces

Theorem
Let T be a linear operator on a finite-dimensional real inner product space V. Then T is self-adjoint if and only if there exists an orthonormal basis β for V consisting of eigenvectors of T.

Proof
The argument for necessity is immediate.

Suppose that T is self-adjoint. By the lemma, the characteristic polynomial of T splits. Hence we may invoke Schur’s Theorem to obtain an orthonormal basis β for V such that $A = [T]_\beta$ is upper triangular.

Since $A = A^*$, we must have that A is diagonal. Thus β consists of eigenvectors of T.