Bipartite and Complete Graphs
Definition of Graph

Definition
A graph $G = (V, E)$ is a structure consisting of a finite set V of vertices (also known as nodes) and a finite set E of edges such that each edge e is associated with a pair of vertices v and w.

We write $e = \{v, w\}$ or $\{w, v\}$ and say that:

1. e is an edge between v and w,
2. e is incident on both v and w, and
3. e joins the vertices v and w.

In this case both v and w are adjacent vertices and they are incident on e.
Subgraphs and Induced Subgraphs

Definition
Let $G = (V, E)$ be a graph. A graph $G' = (V', E')$ is a subgraph of $G = (V, E)$ if V' is a subset of V and E' is a subset of E.

If W is any subset of V, the subgraph of G induced by W is the graph $H = (W, F)$ where f is an edge in F if $f = \{u, v\}$ where f is in E and both u and v are in W.
Definition
A graph is said to be **connected** if there is a path between every pair of vertices in it.
Connected Components of Graphs

Proposition
Let $G = (V, E)$ be a graph and let \sim be the relation on V defined by $v \sim w$ if and only if v and w are connected by a path. Then \sim is an equivalence relation on V.

Definition
Let \tilde{V} be an equivalence class of the relation \sim on V. The subgraph induced by \tilde{V} is called a **connected component** of the graph.

Note
A connected component of a graph is a maximal connected subgraph.
Complete Graphs

Definition
A simple graph with n vertices is said to be complete if there is an edge between every pair of vertices.

The complete graph on n vertices is denoted by K_n.

Proposition
The number of edges in K_n is $\frac{n(n-1)}{2}$.
Bipartite Graphs

Definition
A **bipartite graph** is a graph in which the vertices can be partitioned into two disjoint sets V and W such that each edge is an edge between a vertex in V and a vertex in W.
Example

This graph is bipartite.
Subgraphs of Bipartite Graphs

Proposition

A subgraph of a bipartite graph is bipartite.
Example

This graph is not bipartite.
Example

Is this graph bipartite?
Some Families of Bipartite Graphs

Proposition
A path P_n of length $n - 1$ is bipartite.

Proposition
A cycle C_n of length n is bipartite if and only if n is even.
Complete Bipartite Graphs

Definition
A complete bipartite graph is a simple graph in which the vertices can be partitioned into two disjoint sets V and W such that each vertex in V is adjacent to each vertex in W.

Notation
If $|V| = m$ and $|W| = n$, the complete bipartite graph is denoted by $K_{m,n}$.

Proposition
The number of edges in $K_{m,n}$ is mn.
Cycle Characterization of Connected Bipartite Graphs

Theorem
A connected graph is bipartite if and only if it contains no cycle of odd length.

Proof Idea
(⇒) by contrapositive

(⇐) Choose a vertex \(v \) and partition the vertex set by parity of length of shortest path from \(v \).
The Number of Edges of a Bipartite Graph

Let G be a simple bipartite graph with t vertices.

What is the largest number of edges that G can have?
Acknowledgements

Statements of definitions follow the notation and wording of Balakrishnan’s *Introductory Discrete Mathematics*.